Abstract

Numerous energy sources continuously emit large amounts of waste energy into the earth's atmosphere. Significant losses, nearly 85% of the incident light on a PV panel, are either reflected from the PV surface, accounting for up to 20%, or dissipated as heat. In this work, a novel lab-scale hybrid photovoltaic-thermal regeneration (HPVT-R) system is designed, constructed, and tested to restore some of the reflection losses in the PV system. The new HPVT-R system design permits the PV and thermal co-systems to perform autonomously while revitalizing some of the reflection losses by hybridization. Thorough testing of the HPVT-R system was performed under lab-scale indoor simulated light and outdoor solar radiation conditions in Thunder Bay, Ontario. The HPVT-R system regenerated approximately 14 % of the reflected light in these tests, transforming it into electrical power and heat. Under the solar-simulated lights, the indoor test setup regenerated around 17 mW of electric power from the reflected light accounting for slightly less than 1% of more electric power per unit PV surface area. However, the outdoor solar radiation tests rejuvenated nearly 137 mW of electric power, accounting for approximately 3% more electric power per unit PV surface area, with a conversion efficiency of nearly 7%. Regarding heat energy, the HPVT-R system regenerated approximately 34% more in indoor and outdoor performances entirely from the reflected light. This research investigates the performance aspects of the HPVT-R system operated under different working conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call