Abstract

The present research work is focused on the study of co-channel interface with its minimization techniques without influencing its performance, in turn, which is desired to achieve the minimized complexity of Quadrature Amplitude Modulation (QAM)-based Filter Bank Multi-Carrier (FBMC) to minimize the interference and increase the spectral features with consideration of intrinsic features extractions for the ML (Maximum Likelihood) synthesis systems. The valid measures are given various concerns under consideration, to start with the consideration of the evaluation of the Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFD performance metrics along with the FBMC/QAM in signal transmission in a dedicated fading channel for the evaluation of the modulation order and BER as a required trade-off for quality assessments. From the results, it can be noted that the proposed FBMC QAM has performed better when compared with conventional FBMC systems. The present research also includes considering and calculating the efficiency of nonlinear channels with the Multi-User Multiple Input Multiple Output (MU-MIMO) and FBMC/QAM techniques. In continuation, the obtained results are dominating significantly to access the possible solution to meet the efficiency of the proposed system. In the next part of the research, it is considered with implementation of the sub-detector during the downlink of the system with the technique of threshold-driven strategy for better accuracy and minimization of the complexity in terms of ML detection in terms of order of its modulation. The calculations of the proposed technique with better BER are done on the recent MATLAB platform with its simulation demonstration for its detailed observation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.