Abstract

ABSTRACT The single-phase induction motors (SPIMs) are predominantly used in the wider range of application developments. However, these motors have comparatively lower efficiency. Motors such as permanent magnet synchronous motor (PMSM), synchronous reluctance motor (SynRM), or switched reluctance motor are energy efficient. Although these motors posses high efficiency, the application cost becomes a significant concern. To cause the compatible performance of economical and conventional SPIM in terms of efficiency, lower temperature rise, weight reduction, and increased speed, this work addresses the conversion of SPIM into line-start SynRM (LS-SynRM). The required necessary modifications are analyzed using FEM. The design methodology is suggested for a typical 0.5HP SPIM that is tested in terms of rotor constructive parameters. The parametric sensitivity analysis is carried out using Ansys Maxwell FEM software. The rotor parameters such as cutout dimensions, type of barrier, their positions and widths, bridge thickness, pole arc to pole pitch ratios, and the end ring configurations are considered for the analysis. It has been determined that the efficiency is largely affected by the barrier positions and its width, and an improvement of two percent has been noted. However, the efficiency of LS-SynRM is also a function of bridge thickness, with higher values inferior is the efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call