Abstract

Abstract Mixed flow turbines offer additional design freedom compared with conventional radial turbines. This is useful in the automotive turbocharger application to reduce rotor inertia, which can be very beneficial for the transient response of a highly boosted downsized passenger car powertrain. A previously published study from the authors analyzed a series of nine mixed flow turbine rotors with varying blade cone angle and inlet blade angle. This paper reports an extension of that study with two further mixed flow turbine rotors where the chord length of the rotor blade was extended. The aim of this work was to understand both the aerodynamic and mechanical impacts of varying the chord length, particularly for the turbocharger application where off-design performance and transient response are very important. The baseline mixed flow rotor for this study had a blade cone angle of 30 deg and an inlet blade angle of 30 deg. Two further variations were produced; one with the trailing edge (TE) extended in the downstream direction across the entire blade span. In the second variation, the chord was extended at the hub corner only, while the shroud corner of the TE remained unchanged, with the aim of achieving some aerodynamic improvement while meeting mechanical requirements. When the blade was extended at both the hub and shroud, the inertia and stress levels increased significantly and the blade eigenfrequencies reduced. There was a significant improvement in peak efficiency, but the mechanical performance was unfavourable. The improvement in peak efficiency was mainly due to better exhaust diffuser performance and, therefore, would not be realized in most turbocharger installations. The blade that was extended at only the hub corner incurred very little additional inertia, and the centrifugal stresses and blade eigenfrequencies were improved. Consequently, it was possible to reduce the blade thickness at the TE in order to achieve a more aerodynamically optimized design. In this case, the mechanical performance was acceptable and there were efficiency improvements of up to 1.1% points at off-design conditions, with no reduction in peak efficiency or maximum mass flowrate. Therefore, the blade that was extended only at the hub produced some improvement within acceptable mechanical limits. The flow field features were considered for the three rotor geometries to explain the changes in loss and efficiency across the operating range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.