Abstract

BackgroundWith orthopedic surgery increasing year on year, the main challenges in bone drilling are thermal damage, mechanical damage, and drill skid. The need for new orthopedic drills that improve the quality of surgery is becoming more and more urgent.MethodsHere, we report the skidding mechanism of drills at a wide range of inclination angle and propose two crescent drills (CDTI and CDTII). The anti-skid performance and drilling damage of the crescent drills were analyzed for the first time. Inclined bone drilling experiments were carried out with crescent drills and twist drills and real-time drilling forces and temperatures were collected.ResultsThe crescent drills are significantly better than the twist drill in terms of anti-skid, reducing skidding forces, thrust forces and temperature. The highest temperature is generated close to the upper surface of the workpiece rather than at the hole exit. Finally, the longer crescent edge with a small and negative polar angle increases the rake angle of the cutting edge and reduces thrust forces but increases skidding force and temperature. This study can promote the development of high-quality orthopedic surgery and the development of new bone drilling tools.ConclusionThe crescent drills did not skid and caused little drilling damage. In comparison, the CDTI performs better in reducing the skidding force, while the CDTII performs better in reducing the thrust force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.