Abstract

Orbital angular momentum (OAM) with mutually orthogonal advantage attribute to break through the high capacity and long-reach transmission limited in the classical passive optical network (PON). Employing Laguerre Gaussian (LG) mode as the orthogonal OAM excitation, a more dimensional multiplexing PON system is proposed to creatively hybridize OAM division multiplexing (OAM-DM) based on wavelength division multiplexing (WDM) and orthogonal frequency division multiplexing (OFDM). By utilizing the compatibility of OAM-DM and WDM, data of 40 Gbit/s OFDM signals is successfully transmitted in 80 km multimode fiber (MMF) with low crosstalk. Within this hybrid system, the effects of different wavelengths and different modes on the bit error rate (BER) are discussed at varying transmission distances. Moreover, the performance of several subsystems carrying quadrature phase-shift keying (QPSK), on-off keying (OOK), and OFDM modulation signals is also compared at a BER less than 3.8×10−3. It is observed that the proposed OAM-DM-WDM-OFDM-PON system has favorable performance, which is a reasonable solution for large-capacity PON architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.