Abstract

An active radio frequency identification (RFID) system has the advantages of a long identification distance and a good identification rate, overcoming passive RFID drawbacks. Therefore, interest in the development of active RFID systems has been gradually increasing in areas of harbor logistics and national defense. However, some identification failures between active RFID systems developed under the same standards have been reported, presumably due to a lack of development of accurate evaluation methods and test equipment. We present a realization of the hardware and software of an emulator to evaluate the standard conformance of an active RFID system in a fully anechoic chamber. The performance levels of the designed emulator are analyzed using Matlab/Simulink simulations, and the applicability of the emulator is verified by evaluating the standard conformance of a real active RFID tag. Finally, we propose a new evaluation method by incorporating a self-running test mode environment into the RFID tags to reduce testing time and increase testing accuracy. The application of the suggested method to actual tags improves measurement uncertainty by 0.56 dB over that obtained using existing methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call