Abstract
A magnetic proton recoil (MPR) spectrometer is a novel instrument with superior performance, including high energy resolution, high count rate and good signal-to-noise ratio (SNR) for measurements of neutron spectra from inertial confinement fusion (ICF) experiments and high power Tokomaks. In this work, the design of a compact MPR spectrometer (cMPR) was evaluated for deuteron-tritium (DT) neutron spectroscopy. The characteristics of the spectrometer were analyzed using 2-D beam transport simulations, 3-D particle transport calculations and Monte-Carlo simulations. Based on the theoretical results, an instrument design that satisfies special experimental requirements is proposed. The energy resolution and efficiency of the spectrometer are also evaluated. The results indicate that the proposed cMPR spectrometer would achieve a detection efficiency and energy resolution of approximately 10−8 and 4%, respectively, for DT neutrons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.