Abstract

This study presents a new side slotted Vivaldi antenna (SSVA) with size reduction and improve gain with directive featured as compared with traditional Vivaldi antenna. A number of parameters are studied and optimised for breast imaging system over ultra-wideband frequency (3.1–10.6 GHz). The parameter such as substrate type, radiating fins, cavity diameter, stub radius, stub angle is optimised to reduce the size of the antenna with better antenna performance in terms of bandwidth, gain, efficiency, and directivity. The radiating fins are modified by etching a number of side slot to enhance the gain and electrical length. The optimised size of the antenna is 45 (L) × 37 (W) mm2, 8.5 mm cavity diameter, 9.5 mm stub radius with the angle of 80° by using Rogers 5870 substrate. Results show that the antenna has a bandwidth from 3.9 to 9.15 GHz for reflection co-efficient <−10 dB with directional radiation pattern. The peak gain of proposed prototype is 6.8 dBi and the radiation efficiency is about 88% on an average over the operating bandwidth. The fidelity factor for face to face is 0.92 and for side by side is 0.62, which prove the directionality and lower distortion of the signal. A number of design iteration is done to achieve the optimum result of the antenna. The prototype of proposed SSVA antenna is successfully fabricated, simulated, and measured. Later, the antenna is used in breast phantom measurement system for microwave imaging application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.