Abstract

In this paper, a biomimetic jellyfish origami mechanism (BJOM) based on waterbomb tessellations is designed. Its geometric model is established, and its kinematic equation is derived. Its volume ratio and fineness ratio that characterize the morphological characteristics are analyzed. The maximum volume ratio and the maximum fineness ratio range were taken as the two optimization objectives, respectively. And two independent single-objective optimization models were established to optimize the structural parameters of the BJOM. Compared with the example before optimization, the results of the two optimization models have greatly improved the range of fineness ratio and the volume ratio. Finally, three factors about fineness ratio, volume ratio and material consumption were comprehensively considered to establish a three-objective optimization model. The results of these three optimization models compared is shown: the BJOM after three-objective comprehensive optimization has better comprehensive performance than the former two optimization schemes. It shows the feasibility of the optimization method and the superiority of the optimization design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.