Abstract

This paper describe design and optimize of the lightweight primary mirror assemblies for the space telescope, aim at supporting structure of the primary mirror with an aperture of 530mm for the Cassegrain optical. We design three kinds of flexible support structure for the mirror, and numerical simulation analysis the accuracy of reflective shape for mirror assemblies on the ground test and in-orbit work environment, compare the results of analysis and optimize parameters of flexible structure, determine the final project and put it into production. The results show that the component should be aligned and tested in the same direction of the mirror optical axis and the gravity, the accuracy of reflective shape is PV<λ/25 and RMS<λ /125 (λ = 632.8nm), under the state ofΔ4oC temperature change, the RMS<λ/234 (λ = 632.8nm), the project meet design requirements of the optical system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.