Abstract
AbstractBased on the material properties and fuzzy theory, a new design method of TiB2‐based composite ceramic tool material was proposed, and the TiB2‐based composite ceramic tool material with excellent friction and wear resistance was designed. Initially, the fuzzy evaluation method was used to establish the matrix of the friction and wear resistance of the material, and the TiB2‐based material component with excellent friction and wear resistance was determined. Ultimately, based on the principle of fuzzy cognitive map, the correlation mapping of “sintering process–microstructure–mechanical properties” was established, and the composition ratio and sintering process were optimized. The results show that the TiB2–TaC–TiC ceramic tool material had excellent friction and wear resistance. When the volume content of TaC was 8 vol.%, the volume content of TiC was 20 vol.%, the heating rate was 100°C/min, the holding time was 8 min, the sintering temperature was 1600°C, and the sintering pressure was 50 MPa, the mechanical properties were hardness 23.5 GPa, bending strength 438 MPa, and fracture toughness 10.26 MPa∙m1/2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Ceramic Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.