Abstract

This paper presents a systematic methodology for the design of a steam distribution network (SDN) which satisfies the energy demands of industrial processes. A superstructure is proposed to include all potential configurations of steam systems, and a mixed-integer nonlinear programming (MINLP) model is formulated accordingly to minimize the total annualized cost. The proposed model determines simultaneously (i) the structure and operational configuration of a steam system and (ii) the interaction between the steam system and the heat recovery system. A series of case studies are presented to demonstrate the feasibility and benefit of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.