Abstract
This paper delves into the strategic design and optimization of silver (Ag) nanostructured arrays within plasmonic metamaterials, targeting the enhancement of imaging sensitivity. Leveraging Finite-Difference Time-Domain (FDTD) simulations, our research rigorously compares various Ag nanostructured geometries, including nanospheres, nanocones, nanodisks, and nanocubes. The aim is to pinpoint configurations that significantly enhance electric field localization on the surfaces of nanostructures, a pivotal factor. The nanocube array exhibits superior field enhancement, particularly in narrow nanogaps, suggesting its suitability for high-sensitivity applications. Further exploration into nanocube arrays reveals the crucial role of nanogap size and spacer layer thickness in tuning the optical properties through the manipulation of Fabry–Pérot and mirror image modes in metal–insulator–metal (MIM) structures. By presenting a thorough analysis of these nanostructured arrays, the study not only contributes to our understanding of the fundamental principles governing plasmonic metamaterials but also provides a solid foundation for future innovation in highly sensitive imaging applications. It underscores the importance of nanostructure design and optimization in achieving significant improvements in the performance of plasmonic devices, marking a pivotal step forward in the field of nanophotonics and its application to sensitive imaging technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.