Abstract

This paper addresses the design and optimization of interference-fit and adhesively bonded joints (hybrid joints) in lightweight structures. These types of joint involve a hub and a solid or hollow shaft, locked together by a frictional force (based on the radial pressure and the Coulomb friction law) and an adhesive strength generated at the coupling surfaces. The total strength of the joint allows the transmission of axial forces or torque moments. This paper amply investigates the optimal combinations of the hub aspect ratio (ratio between internal and external diameters) in order to maximize the axial (or torque) load transmitted by the joint as well as to reduce the weight of the structure. Derived from an analytical approach, two normalizing parameters are employed which are able to take into account the simultaneous effect of the materials density, the shaft aspect ratio, the hub yield strength, the coefficient of friction between the mating parts and, finally, the adhesive mean strength. Some design formulae and charts, based on the maximum shear yield criterion (Tresca), are proposed as a function of such normalizing parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.