Abstract

Existing disposal methods of MSW are costly and have led to other environmental pollution. A poly-generation system (PGS) integrating the pyrolysis, incineration and anaerobic digestion processes is proposed to lower the treatment cost of MSW by the internal supplies of auxiliary fuel oil, electricity, steam, and hydrogen. A mixed integer nonlinear programming is developed to obtain the optimal feed ratio and achieve the balance between supply and demand of the PGS by minimizing the total annual cost. Electricity balance scenario and gasoline balance scenario are proposed to illustrate the PGS model. The total annual cost of the electricity balance scenario is 95,122.23 CNY/h and the one of the gasoline balance scenario is 15,699.66 CNY/h. Electricity balance scenario shows a larger economic advantage with about 79,710.97 CNY/h due to the relatively lower fuel yield of pyrolysis. Operating cost of the PGS can be reduced by the comparison of subsidy proportion between PGS and triditional incineration treatment. Considering the internal supplies of auxiliary fuel and electricity, PGS is capable to reduce the MSW treatment cost and improve the MSW resource utilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call