Abstract
AbstractThe detection of human diseases is a major application for biosensors. During this work, a 2D photonic crystal fibre (PCF) biosensor design for dengue virus detection has been suggested. This work presents the decagonal hollow core PCF‐based dengue virus bio‐sensor and quantitatively investigates it over the terahertz regime. The suggested biosensor's performance is assessed using COMSOL Multiphysics, a professional tool that uses the Finite Element Method. The simulation's outcomes show that the suggested sensor performed better than earlier research, with a high sensitivity of 98.79%, 97.96%, 97.71%, 98.58%, 96.99% and 97.47% with more less confinement loss 1.2766 × 10−12 dB/m, 1.6385 × 10−12 dB/m, 2.8015 × 10−13 dB/m, 1.1798 × 10−13 dB/m, 7.0336 × 10−12 dB/m and 0.00 dB/m respectively for infected Haemoglobin (Hgb), Normal Haemoglobin (Hgb), Infected Platelets (Plt), Normal Platelets (Plt), Infected Plasma (Psm) and Normal Plasma (Psm) at 3.0 THz using the ideal geometric configuration. Very soon, its remarkable sensitivity and guiding capabilities will be crucial to dengue virus detection technology.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.