Abstract

This paper presents analysis, design, and optimization of a high-power permanent-magnet synchronous generator (PMSG). This generator is introduced in a large-scale wind turbine which can be used in a big wind farm. This generator is used in gearless configuration. The work focuses on the geometric sizing and the finite element analysis (FEA) of the PMSG. FEA is a good choice for analyzing problems over complicated domains. The flux, the electromotive force, the cogging torque, and the torque are calculated using analytical equations. Then, these parameters are obtained using finite element method (FEM) in the software FEMM and the compared with analytical results in order to validate our study. The second part presents the formulation of the optimization problem, including the optimization space, constraints, and objectives. The genetic algorithm (GA) is adopted in this design optimization in order to minimize the generator cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.