Abstract

Herein, we present a design analysis and optimization of open-cladded plasmonic waveguides on a Si3N4 photonic waveguide platform targeting CMOS-compatible manufacturing. For this purpose, two design approaches have been followed aiming to efficiently transfer light from the hosting photonic platform to the plasmonic waveguide and vice versa: (i) an in-plane, end-fire coupling configuration based on a thin-film plasmonic structure and (ii) an out-of-plane directional coupling scheme based on a hybrid slot waveguide. A comprehensive numerical study has been conducted, initially deploying gold as the reference metal material for validating the numerical models with already published experimental results, and then aluminum and copper have been investigated for CMOS manufacturing revealing similar performance. To further enhance coupling efficiency from the photonic to the plasmonic part, implementation of plasmonic tapering schemes was examined. After thorough investigation, plasmo-photonic structures with coupling losses per single interface in the order of 1 dB or even in the sub-dB level are proposed, which additionally exhibit increased tolerance to deviations of critical geometrical parameters and enable CMOS-compatible manufacturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.