Abstract

A N-type silicon carbide (SiC) gate turn-off thyristor (GTO) is designed and simulated with Sentaurus TCAD software, the detailed optimization process and final parameters are presented in this paper. By introducing 3-step JTE structure, a maximum breakdown voltage (BV) exceeding 15kV is achieved with 90μm drift layer, and over 13kV BV is available with an etching depth window of 0.28μm. By optimizing the P-base concentration, the maximum turn-off gain of the final structure is 6.01, and the forward voltage drop is 3.51V at 200A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . The results show that this design can effectively increase the operating voltage and current of the power system while reducing dynamic loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call