Abstract

By targeting the thiamin diphosphate (ThDP) binding site of Escherichia coli (E. coli) pyruvate dehydrogenase multienzyme complex E1 (PDHc E1), a series of novel ‘open-chain’ classes of ThDP analogs A, B, and C with N-acylhydrazone moieties was designed and synthesized to explore their activities against E. coli PHDc E1 in vitro and their inhibitory activity against microbial diseases were further evaluated in vivo. As a result, A1–23 exhibited moderate to potent inhibitory activities against E. coli PDHc E1 (IC50=0.15–23.55μM). The potent inhibitors A13, A14, A15, C2, had strong inhibitory activities with IC50 values of 0.60, 0.15, 0.39 and 0.34μM against E. coli PDHc E1 and with good enzyme-selective inhibition between microorganisms and mammals. Especially, the most powerful inhibitor A14 could 99.37% control Xanthimonas oryzae pv. Oryzae. Furthermore, the binding features of compound A14 within E. coli PDHc E1 were investigated to provide useful insights for the further construction of new inhibitor by molecular docking, site-directed mutagenesis, and enzymatic assays. The results indicated that A14 had most powerful inhibition against E. coli PDHc E1 due to the establishment of stronger interaction with Glu571, Met194, Glu522, Leu264 and Phe602 at active site of E.coli PDHc E1. It could be used as a lead compound for further optimization, and may have potential as a new microbicide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.