Abstract

The measured impedance signal of a single particle or cell in a microchannel is of the μA level, which is a challenge for measuring such weak signals. Therefore, it is necessary to improve the intensity for expanding the applications of impedance measurement. In this paper, we analyzed the impact of geometric parameters of microchannel on output signal intensity by using the three-dimensional finite element method. In comparison to conventional microchannels, which are distributed at a uniform height, the microchannels in this design use the height difference to enhance the signal intensity. By analyzing the effects of the geometric dimensions of the constriction channel, main channel height, radius of particles, types of cells, shapes of particles with different ellipticities, and particles spacing on the current signal, we concluded the optimal dimensions of these parameters to improve the intensity of the induced current signal. Through the fabrication of the optimized size of device and experimental demonstration, it is verified that the current signal intensity caused by the particle with a diameter of 10 µm is nearly twice that of the conventional structure with a height of 20 µm, which proves the correctness of the optimization results and the feasibility of this work. In addition, the performance of the device was verified by measuring the mixtures of different size particles as well as non-viable and viable yeast cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.