Abstract

Humidity sensors are widely used in various fields of life. In meteorological detection, the sensor must have high sensitivity and fast dynamic response time due to extreme environmental interference. However, the sensitive mechanism of the humidity sensor determines that the dynamic response time will inevitably be increased while improving the sensitivity, which undoubtedly creates difficulties for sensor design. This article takes the interdigitated capacitive humidity sensor as the research object and proposes an optimal design scheme for the sensor that considers high dynamic response time and sensitivity. By constructing the sensor’s theoretical mathematical model, the influence of each structure is analyzed. The theoretical model has been verified by finite element simulation to have an accuracy higher than 95%. The article constructs the sensor optimization objective equation based on this model. Through analysis, within the range of structural parameters set in the article, to improve the sensitivity and reduce the dynamic response time of the sensor, the width and spacing of the interdigital electrodes should have a minimum value of 3 μm and a maximum value of 14 μm, respectively. The thickness of the electrode layer and the moisture-sensitive layer should be flexibly adjusted according to the application to ensure the lowest value of the optimization objective function. To further improve the sensor’s performance, the article optimizes the electrode structure and heating strategy of the sensor heating layer, which not only enhances the uniformity of heat transfer but also increases the optimal heat transfer area by 6% compared with the traditional scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call