Abstract

While the orally-active azoles such as fluconazole and posaconazole are effective antifungal agents, they potently inhibit a broad range of off-target human cytochrome P450 enzymes (CYPs) leading to various safety issues (e.g., drug-drug interactions, liver, and reproductive toxicities). Recently we described the rationally-designed, antifungal agent VT-1161 that is more selective for fungal CYP51 than related human CYP enzymes such as CYP3A4. Herein, we describe the use of a homology model of Aspergillus fumigatus to design and optimize a novel series of highly selective, broad spectrum fungal CYP51 inhibitors. This series includes the oral antifungal VT-1598 that exhibits excellent potency against yeast, dermatophyte, and mold fungal pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.