Abstract

In this paper, we use a genetic algorithm and pulse-propagation analysis to design and optimize optical parametric oscillators based on soft-glass microstructured optical fibers. The maximum parametric gain, phase-match, walk-off between pump (1560 nm) and signal (880 nm) pulses, signal feedback ratio and signal-pump synchronization of the cavity are optimized. Pulse propagation analysis suggests that one can implement a fiber optical parametric oscillator capable of generating approximately 200-fs pulses at 880 nm with 43% peak-power conversion, high output pulse quality (time-bandwidth product approximately 0.43) and a wavelength tuning range that is limited only by the glass transmission windows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.