Abstract

For many sensor network applications, such as military surveillance, it is necessary to provide full sensing coverage to a security-sensitive area while, at the same time, minimizing energy consumption and extending system lifetime by leveraging the redundant deployment of sensor nodes. In this paper, we propose a surveillance service for sensor networks based on a distributed energy-efficient sensing coverage protocol. In the protocol, each node is able to dynamically decide a schedule for itself to guarantee a certain degree-of-coverage (DOC) with average energy consumption inversely proportional to the node density. Several optimizations and extensions are proposed to enhance the basic design with a better load-balance feature and a longer network lifetime. We consider and address the impact of the target size and the unbalanced initial energy capacity of individual nodes to the network lifetime. Several practical issues such as the localization error, irregular sensing range, and unreliable communication links are addressed as well. Simulation shows that our protocol extends system lift-time significantly with low energy consumption. It outperforms other state-of-the-art schemes by as much as 50% reduction in energy consumption and as much as 130% increase in the half-life of the network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.