Abstract

Herein, the mid-infrared (7.7–13.7 μm) diamond-based phase shifter was designed and optimized by finite-element analysis. The ridge-shaped diamond waveguide is designed and doped to form the internal p–n structure, and the internal carrier distribution is changed by applying forward and reverse voltages to change the effective refractive index to achieve the effect of π-phase shift. The results show that when p-doping concentration is 4 × 1017 cm−3 and n doping concentration is 1 × 1018 cm−3, upon the reverse voltage (8 V) is applied, the change of the real part of effective refractive index (ΔR) is 1.6 × 10−5, and the length of the phase shifter (L) required to realize the π-phase shift is 241 mm; upon the forward voltage (–8 V) is applied, ΔR increases to 3.2 × 10−4, and the length of the phase shifter required is shortened to 12.03 mm. Such a short length is relatively easy in industrial production. In order to make the refractive index distribution more uniform, the carrier concentration has been optimized as 1 × 1017 cm−3 for p-type and 4 × 1017 cm−3 for n-type, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.