Abstract

The Main motive of this work is to develop an Axial flux Permanent magnet alternator for on board power generation source for an electric bike. An average electric bike having a range of 40KM to 60KM per full charge will take an average of 3 hours to charge. In the present work, an onboard power generator is modeled for an electric bike which has its very own power generation system. An axial flux permanent magnet alternator is coupled to pedal and whenever the pedaling action is performed, the alternator produces power to recharge battery or also run the hub motor of the electric bike depending upon the required output voltage with the help of relay Switch. The mathematical modelling and design of the axial flux permanent magnet alternator is done using Matlab and Solidworks. Axial flux alternators are increasingly being used for large-and small-scale applications because of innovation, new material research, and manufacturing techniques that save time. Depending on the needed output power, the axial flux alternator can be built with or without an iron core and with “n” numbers of stator and rotor. The surface mounted permanent magnet technique and several one side and both side topologies with and without iron cores were designed in this work. Small-scale E-bikes employ the AFPM alternator to generate power onboard. Depending on the application, the power generated may be supplied back to a BLDC motor or used to recharge batteries. The respective results were discussed in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call