Abstract

In this paper, an integrated model considering induction heating, heat transfer, growth kinetics and thermo-elastic stress has been developed to study temperature distribution in the growth system, crystal shape and stress distribution in the asgrown aluminum nitride (AIN) crystal. The electromagnetic field and induction heat generation are calculated by the Maxwell equations. Transient temperature distribution in the growth chamber is simulated by energy accounting for conduction/radiation within and between various components. To reduce thermal stress and dislocation, a growth method to enlarge the ingot diameter from a smaller seed and maintain low thermal stress in the crystal has been proposed. The thermo-elastic stress fields have been calculated for several designed temperature profiles along the crucible inner wall and stress distribution has been correlated to dislocation density distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.