Abstract

We propose and design a novel homogeneous nanorod-assisted multi-core photonic crystal fiber (NA-PCF), and it utilizes the flexibility of photonic crystal fiber (PCF) for air-hole design, NA-PCF applied to multi-core fiber (MCF) communication system. High refractive index nanorods are introduced in the center of the seven cores which are further surrounded by a periodical arrangement of air-holes. The air-holes and the nanorods work together to greatly suppress the crosstalk (XT) between the cores. By comprehensively balancing the influence of various parameters on XT, single-mode cutoff wavelength (λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">cc</sub> ) and the effective mode field area (A <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">eff</sub> ), simulation results show that the NA-PCF has a A <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">eff</sub> of about 70.26 μm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , XT of about -50.58 dB/km, relative core multiplicity factor (RCMF) of 4.7 and λ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">cc</sub> of 1530 nm. This designed structure targets applications in large-capacity long-distance MCF communication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.