Abstract

Membraneless microfluidic fuel cell (MMFC) has potential application prospects in micro-devices due to the characteristics of considerable output performance, superior cleanliness and easy miniaturization. Whereas, the performance of MMFC is restricted by the mass transfer of two-phase flow, which manifests as the inefficiency transportation in liquid phase and obstruction of gas phase. This paper proposes a novel sinusoidal corrugated channel (SCC) for MMFC though developing a three-dimensional two-phase model by coupling the multi-physics field to improve the cell performance in mass transfer, and further studies the two-phase flow characteristics of geometric parameters of SCC, including the amplitude A and angular frequency ω. Based on the optimal configuration in A of 0.5 mm and ω of 3 rad s−1, compared with the conventional straight channel, the increase ratios of maximum current density, power density, fuel utilization are 13.69%, 8.39% and 13.72%, respectively. Additionally, the gas volume fraction at the maximum power density decreases by 12.62%. This paper provides new insights and theoretical foundations for the study of MMFC flow field configurations, and furnishes references for the mass transfer intensification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.