Abstract

This study involves the construction of a hydrogen supply chain optimization model using a centralized storage model that combines and consolidates flows of hydrogen from different production sites into integrated bulk storage. To supply hydrogen to a fuel cell electric vehicle station, various hydrogen supply pathways and storage configurations for different types of production technologies and transportation modes are considered. In terms of the topological structure, the centralized storage model requires fewer storage areas than the decentralized storage model. The results show that a hydrogen supply chain with a centralized storage structure advances the phase transition of central hydrogen production plants and reduces the total annual cost of the entire supply chain. The optimal hydrogen pathway is on-site steam methane reforming production in the early markets for fuel-cell electric vehicles. However, in matured markets, hydrogen is liquefied in central production plants and stored in bulk storages equipped with vaporizers. Then, the hydrogen is distributed from the central storage areas to local refueling stations via pipelines. The role of central storage areas is predicted to become important as market shares of fuel cell electric vehicle reach 15–30%; in other words, 0.28–0.56 million tonne/year of hydrogen will be demanded in 20 cities of South Korea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call