Abstract

A novel corrugated tubular shell structure based on triply periodic minimal surface (TPMS) was proposed in this study. The initial diamond tubular thin-walled structure (D-TTS) and corrugated tubular thin-walled structures (C-TTS) model were designed and then fabricated using selective laser melting (SLM). The 3D-printed model deviation distribution was obtained by using computed tomography (CT) scanning. Compressive behaviors and energy absorption capacity of the tubular thin-walled structures were investigated using experimental and numerical methods. To obtain optimal designs of C-TTS, a surrogate model was established and multi-objective optimization was carried out. The maximal specific energy absorption (SEA) and the minimal peak crushing force (PCF) were obtained by non-dominated sorting genetic algorithm II (NSGA-II). Compared with the initial D-TTS, maximal SEA is increased by 9.34%, and the minimal PCF is reduced by 58.96%. This structure enhances the diversity of tubular structure designs while also inspiring innovative approaches for developing energy absorption devices and structures utilizing TPMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.