Abstract

Coal burning is a major contributor to air pollution. Selecting the optimal coal alternative path with economic feasibility and maximum environmental benefits is an important policy choice to mitigate air pollution. It could provide a basis for the design of energy transition policies and the green development of coal resource-based cities. This study designed a coal substitution policy based on the multi-objective optimization model, explored the optimal coal substitution path in coal resource-based cities with the goal of minimizing the costs and maximizing the benefits of coal substitution, and assessed the maximum emission reduction potential of air pollutants. The results show that: (1) by 2025, coal consumption in the study area must be reduced to 85%. The optimal coal substitution path is 90.00% coal-to-electricity and 10.00% coal-to-gas for civil emission sources and 83.94% coal-to-electricity and 16.06% coal-to-gas for industrial boiler emission sources. (2) by 2030, coal consumption must be reduced to 75%. The optimal coal substitution path is 90.00% coal-to-electricity and 10.00% coal-to-gas for civil sources and 78.80% coal-to-electricity and 21.20% coal-to-gas for industrial boiler sources. (3) by implementing the coal substitution policy, emissions of six key air pollutants such as SO2, NOX, CO, VOCs, PM10, and PM2.5 could decrease significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call