Abstract

Methane steam reforming will still account for most of hydrogen production in the coming decades. Membrane reactor can play a key role in both energy saving and process/equipment compactness, particularly for its decentralized applications. Here we design a particles-based packed-bed membrane reactor and explore the operational window and design challenges by conducting systematic study experimentally and computationally, particularly emphasizing geometrical scale of membrane reactor and catalyst activity. The results show that membrane reactor presents maximum hydrogen flux by consuming unit methane under the optimized operation conditions of GHSV (i.e., 1134 hr−1) and steam-to-carbon ratio (i.e., 2), and computational study shows that optimal operation window is around 30 atm and 773.15 K. Moreover, the design criteria of “Catalyst activity – Membrane performance – Radial depth” is revealed quantitatively and catalyst activity is identified as the key limiting factor for further process intensification. Briefly, these results shed some lights on operation, optimal design, and further improvement of membrane reactor in methane steam reforming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call