Abstract

The interaction between design parameters and operation variables is a complex problem that affects system techno-economic performance. The aim of this paper is to optimize the design and operation of an SOFC/MGT integrated system. The problem consists of design and operation optimization of an integrated SOFC/MGT system. Decision variables including design parameters (number of SOFC cells) as well as the operation parameters (air pressure ratio, methane and air flow rates). The multi objective approach using genetic algorithm is applied considering two pairs of proposed objectives: (1) maximization of output power and minimization of the electricity cost and (2) maximization of system electrical efficiency and minimization of the electricity cost. The results demonstrate minimum cost of electricity is 0.047$/kWh at 306.49kW output power and 59.93% efficiency. The Pareto frontiers show that 11.23% growth of output power leads to only 5.3% increase in electricity cost and a growth of 12.18% increase of efficiency leads to only 4.05% increase in electricity cost, which is more favorable. Multi objective optimization provides valuable information about flexibility of trade-offs between design and operation variables for decision making and determination of system marginal cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.