Abstract

Oxyfuel combustion is a promising alternative for CO 2 capture. While this has been proven in pulverized fuel (PF) burners, research in fluidized bed (FB) reactors is still scarce. Our work aims to increase the knowledge about this technology. To this purpose, a 95 kW th FB oxyfuel combustion test rig has been erected. Its main characteristics are described in this paper, giving detailed information on the subsystems: the FB reactor, the fuel and oxidant supplies, and ancillaries. Plant flexibility is emphasized. It allows to operate under different CO 2/O 2 ratios, and to recycle CO 2 from the flue gases. Both the processes design and monitoring are supported by simulations that have been validated against experimental data, regarding fluid dynamics, combustion, and heat transfer. Finally, the performance of the facility has been tested both with coal alone and blended with biomass. CO 2 concentrations over 90% (dry basis) in the flue gases have been obtained. Comparison of air and oxygen combustion tests and operational recommendations are discussed, confirming the feasibility of the FB oxyfuel technology for CO 2 capture purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.