Abstract

In this work, a numerical methodology is implemented applying the computational finite element method for a pair pinion-crown of bevel gears in spiral of the differential system of a compact Sport Utility Vehicle (SUV), with the objective of establishing a criterion of the results to characterize the failure of the gear pair during its operation. To do this, from a CAD model obtained by 3D scanning, the numerical results of the structural case are compared by correlating the transient, fatigue, modal and harmonic studies between a pair of gears without damage and another pair with a damaged (chipped) tooth on the pinion. It is observed that from the harmonic response of stress and vibration, a criterion can be established to differentiate the new pair of gears from the damaged pair, the latter presenting a frequency response pattern with high values with respect to the first. The above may be a reference option for detecting the failure of spiral bevel gear pairs used in automobile differential system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.