Abstract
We present a numerical design procedure for an all-optical compact sensor by means of integrating the optofluidic switch polymer interferometers to measure the microfluidic air pressure and flow rate. The design is based on a flexible air gap optical cavity that can generate an interference pattern when illuminated by a monochromatic light. The optical interference pattern directly depends on the pressure. In our numerical simulations, we take the effects of fluid flow rate, solid deformation, and the light interference into account. We use the beam propagation method for simulating the optics and the finite element method for simulating the mechanics. The significance of the proposed sensor lies with its low power consumption, compactness, low cost, and short length. This sensor can operate under pressure range of 0-60±6% Pa at a constant temperature of 20 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.