Abstract
With the fast development of multi-terminal high-voltage direct-current (HVDC) transmission technology, there is an urgent demand for the HVDC interruption technique. In this paper, an interruption scheme for HVDC based on artificial current zero is proposed with its main circuit breaker consisting of modularized vacuum switch in series. A triggered sphere gap is adopted as the commutation switch to achieve bidirectional DC interruption. The interruption process, particularly, the most important two commutation processes, is simulated based on a circuit model. The residual current and its influence after current commutation, which might exist due to the weak arc extinguishing capacity of the sphere gap, are analyzed. It is proposed to use back-up circuit breakers to interrupt the residual current. Furthermore, the influence of the frequency of the countercurrent on the interruption process, particularly, on the integral of i <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> t in the triggered sphere gap due to the residual current, is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Dielectrics and Electrical Insulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.