Abstract

In this paper, we demonstrate full closed-loop control of electrostatically actuated double-gimbaled MEMS mirrors and use them in an optical cross-connect. We show switching times of less than 10 ms and optical power stability of better than 0.2 dB. The mirrors, made from 10-/spl mu/m-thick single-crystal silicon and with a radius of 400-450 /spl mu/m, are able to tilt to 8/spl deg/ corresponding to 80% of touchdown angle. This is achieved using a nonlinear closed-loop control algorithm, which also results in a maximum actuation voltage of 85 V, and a pointing accuracy of less than 150 /spl mu/rad. This paper will describe the MEMS mirror and actuator design, modeling, servo design, and measurement results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.