Abstract
Working cycle of conventional light-driven molecular rotary motors (LDMRMs), especially Feringa-type motors, usually have four steps, two photoisomerization steps, and two thermal helix inversion (THI) steps. THI steps hinder the ability of the motor to operate at lower temperatures and limit the rotation speed of LDMRMs. A three-stroke LDMRM, 2-(2,7-dimethyl-2,3-dihydro-1H-inden-1-ylidene)-1,2-dihydro-3H-pyrrol-3-one (DDIY), is proposed, which is capable of completing an unidirectional rotation by two photoisomerization steps and one thermal helix inversion step at room temperature. On the basis of trajectory surface-hopping simulation at the semi-empirical OM2/MRCI level, the EP→ZP and ZP→EM nonadiabatic photoisomerization dynamics of DDIY were systematically analyzed. Quantum yields of EP→ZP and ZP→EM photoisomerization of DDIY are ca. 34% and 18%, respectively. Both EP→ZP and ZP→EM photoisomerization processes occur on an ultrafast time scale (ca. 100–300 fs). This three-stroke LDMRM may stimulate further research for the development of new families of more efficient LDMRMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.