Abstract

Regarding decision planning in the electronic manufacturing industry, this paper designs a green closed-loop manufacturing-recycling network for multiperiod production planning for multiple products. The network considers the tradeoff between production costs and environmental pollution induced by production scraps. Therefore, a mixed integer programming model with a dual objective is designed to achieve environmental protection and reduce production costs through resource recovery and utilization. At the same time, the recycled materials are considered to be treated, not entirely new, which could affect the manufacturing qualified rate. Thus, material attributes are proposed to distinguish new raw materials from recycled (second-hand) ones through the closed-loop manufacturing-recycling process to enhance the manufacturing qualified rate. In order to solve the dual-objective optimization model and realize optimal decisions, an epsilon constraint is designed to generate a nonextreme solution set by changing the original feasible region. The results show its ability to obtain a more balanced solution in terms of cost and environmental factors compared with the fuzzy-weighted method. Meanwhile, the analysis proves that the dual-objective optimization model with distinguishing material attributes can improve the efficiency of the manufacturing qualified rate and achieve a win-win situation for production and environmental protection during enterprise production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call