Abstract

Abstract The objective of the present work is to develop a device for training the trunk balance and motion during the early stage of rehabilitation of patients who have suffered a stroke. It is coupled to a standing frame and is based on a parallel continuum manipulator where a wearable jacket is moved by four flexible limbs actuated by rotary motors, achieving the translation and rotation required in the trunk to perform a given exercise. The flexible limbs act as a natural mechanical filter in such a way that a smooth physiological motion is achieved, and it feels less intimidating to the patient. After measuring the kinematic requirements, a model has been developed to design the system. A prototype has been built and a preliminary experimental validation has been done where the jacket generates translation coupled to a rotation around the anteroposterior, medio-lateral and longitudinal axis. The measurements of the motors torque and the force sensors located in the flexible limbs have been compared with the simulations from the model. The results prove that the prototype can accomplish the motions required for the rehabilitation task, although further work is still required to control the interaction with the patient and improve the performance of the device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.