Abstract
The absorption section of quantum dots (QD) based night vision devices consists of the OQ sensitizing layer which absorbs the Infrared radiation, the substrate on which the QD are placed, the electrode and, in several cases, a blocking layer that prevents the flow of charge carriers toward the inverse direction. The absorption section plays a dominant role in determining the absorption spectral ranges and the signal-to-noise ratios of the devices. In this work, we show the design of the absorption section of a short wavelength infrared (SWIR) to visible direct up-conversion device. The growth was 300nm thick PbSe quantum dots (QD) separated by PbSe grain boundaries layer on intrinsic GaAs substrate. Photo-luminescence and absorption measurements suggested that the quantum dots spectral response is blue-shifted to the spectral range in which the up-conversion device is operated i.e., SWIR. We preformed sheet resistance measurements in dark and under illumination that showed that the device exhibits an improvement in the signal-to-noise ratio after annealing ion chloride atmosphere compare with annealing in oxygen atmosphere. These samples have great potential for the use as the absorption section of low-cost, compact, low power consumption, and cooler free up-conversion devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.