Abstract

The design, fabrication, and measurement of a microelectromechanical system (MEMS) three-axis magnetic field sensor (MFS) based on the commercial complementary metal oxide semiconductor (CMOS) process are investigated. The MFS is a magnetic transistor type. The performance of the MFS was analyzed employing the semiconductor simulation software, Sentaurus TCAD. In order to decrease the cross-sensitivity of the three-axis MFS, the structure of the MFS is planed to accommodate two independent sensing components, a z-MFS utilized to sense magnetic field (M-F) in the z-direction and a y/x-MFS composed of a y-MFS and a x-MFS to be utilized to sense M-F in the y- and x-directions. The z-MFS incorporates four additional collectors to increase its sensitivity. The commercial 1P6M 0.18 μm CMOS process of the Taiwan Semiconductor Manufacturing Company (TSMC) is utilized to manufacture the MFS. Experiments depict that the MFS has a low cross-sensitivity of less than 3%. The sensitivities of z-, y-, and x-MFS are 237 mV/T, 485 mV/T, and 484 mV/T, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call