Abstract

Spherical shell structures are the most suitable shape for deep-sea pressure hulls because they have ideal mechanical properties for handling symmetrical pressure. However, the shape accuracy requirement for a hull in a spherical shell structure subjected to deep-sea pressure is extremely high. Even minor asymmetry can significantly degrade its mechanical properties. In this study, a new type of spherical deep-sea pressure hull structure and its integral hydro-bulge-forming (IHBF) method are proposed. First, 32 flat metal plate parts are prepared and welded along their straight sides to form a regular polygonally shaped box. Next, water pressure is applied inside the preformed box to create a spherical pressure vessel. We performed a forming experiment using a spherical pressure vessel with a design radius of 250 mm as a verification research object. The radius of the spherical pressure vessel obtained from the forming experiment is 249.32 mm, the error from the design radius is 0.27%, and the roundness of the spherical surface is 2.36 mm. We performed a crushing analysis using uniform external pressure to confirm the crushing and buckling characteristics of the formed spherical pressure vessel. The results show that the work-hardening increased the crushing and buckling load of the spherical pressure vessel, above that of the conventional spherical shell structure. Additionally, it is established that local defects and the size of the weld line significantly and slightly affected the crushing and buckling load of the spherical pressure hull, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call