Abstract

This paper is concerned with the development of stacked ceramic thin actuation layer IDEAL (Inter-Digitated Electrode Actuation Layer) using d33 actuation mechanism of piezoelectric ceramic. Most of the thin piezoelectric actuators are operated with d31 actuation mechanism. Many kinds of piezoelectric ceramic actuators are strived now to improve the actuation performance. One of efforts to improve performance of piezoceramic actuators is the research trying to develop an actuator using the piezoelectric coefficient d33. The piezoelectric coefficient d33 is almost twice larger than piezoelectric coefficient d31. Therefore, the induced strain of PZT thin layer with d33 actuation mechanism is bigger than that with d31 actuation mechanism. The AFC and LaRC-MFC used d33 actuation mechanism with surface interdigitated electrode to enhance its actuation performance. But their actuation mechanism is not perfect d33 actuation mechanism since the interdigitated electrodes are placed at the surface of the actuation layer. In this research, the stacked ceramic thin actuation layer with imbedded inter-digitated electrodes is designed and manufactured. The actuation strain of stacked ceramic thin actuation layer is measured and compared with the actuation strain of the LaRC-MFC. The comparison shows that the developed stacked ceramic thin actuation layer can produce 10% more actuation strain than LaRC-MFC at relatively high electric field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.