Abstract

In this paper an experimental analysis is presented for the mechanical characteristics of multi-layer elastomeric isolation bearings where the reinforcing element—normally steel plates—are replaced by a fiber reinforcement. The fiber reinforced elastomeric isolator (FREI), in contrast to the steel reinforced elastomeric isolator (SREI) which is assumed to be rigid both in extension and flexure, is assumed to be flexible in extension, but completely lacking flexural rigidity. The FREI is designed and fabricated for evaluation of the performance on seismic isolation. Experiments are carried out to evaluate and compare the performances of fiber reinforcement with performance of steel reinforcement, and the differences in performance among different kinds of fiber reinforcements. From the experiments, the performance of the FREI is shown to be superior to that of the SREI in view of horizontal stiffness and vertical stiffness of the isolator. Therefore, it is possible to produce an FREI that matches the behavior of an SREI. Consequently, the FREI could replace the conventional SREI for seismic isolation with low-cost manufacturing and lightweight installation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call