Abstract

The main magnets of the LHC are series-connected electrically in different powering circuits by means of superconducting bus-bars, carrying a maximum current of 13 kA. These superconducting bus-bars consist of a superconducting cable thermally and electrically coupled to a copper profile all along the length. The function of the copper profile is essentially to provide an alternative path for the current in case the superconducting cable loses its superconducting state and returns to normal state because of a transient disturbance or of a normal zone propagation coming from the neighboring magnets. When a superconducting bus-bar quenches to normal state its temperature must always stay below a safe values of about 100/spl deg/C while the copper is conducting. When a resistive transition is detected, the protection systems triggers the ramping down of the current from 13 000 A to 0. The ramp rate must not exceed a maximum value to avoid the transition of magnets series-connected in the circuit. This paper concerns the design and the manufacture of the high current superconducting bus-bars needed to interconnect the magnetic elements of the main dipoles, the main quadrupoles of the arcs and of the dispersion suppressors of the LHC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.